(a+b)(a2+b2−ab) =
(a)3−(b)3
(a+b)3
(a−b)3
(a)3+(b)3
The given expression is (a+b)(a2+b2−ab) Expanding we get, a3+ab2−a2b+a2b+b3−ab2=a3+b3
Hence, (a+b)(a2+b2−ab) = a3+b3
Question 84 (ix)
Simplify
(a−b)(a2+b2+ab)−(a+b)(a2+b2−ab)
The product (a+b)(a−b)(a2−ab+b2)(a2+ab+b2) is equal to