We have,
A+B+C=1800.......(1)
Then, the value of
sin2A−sin2B+sin2C=?
Solve that:-
sin2A−sin2B+sin2C
=sin2A+sin2C−sin2B
=2sin2A+2C2cos2A−2B2−sin2B
=2sin(A+C)cos(A−C)−2sinBcosB
=2sin(180o−B)cos(A−C)−2sinBcosB
=2sinBcos(A−C)+2sinBcosB
=2sinB[cos(A−C)+cosB]
=2sinB[cos(A−C)+cos(180o−(A+C))]
=2sinB[cos(A−C)−cos(A+C)]
=2sinB[2sinAsinC]
=4sinAsinBsinC
Hence, this is the answer.