(a) Given 2b=a+c,2b2=a2+c2
2b2=(a+c)2−2ac=4b2−2ac
∴2ac=4b2−2b2=2b2 ∴b2ac
2b2=a2+c2 or 2ac=a2+c2 or (a−b)2=0
Hence a=b=c ∴(a)→(p)
(b) a2,b2,c2 are in G.P. ⟹(b2)2=a2c2
b2=ac,b2=−ac
b2=ac⟹a,b,c are in G.P.
But a,b,care in A.P. as well ∴a=b=c
∴(b)→(p)
(c) b2=2a2c2a2+c2 or b2[(a+b)2−2ac]=2a2c2
(a+c2)[(a+b)2−2ac]=2a2c2
or (a+c)4−2ac(a+c2)−8a2C62=0
or [(a+c)2−4ac][(a+c)2−2ac]=0
or (a−c)2=0 or (a+c)2=−2ac
or (a−c) or (2b)2=−2ac
or a=b=c ∵2b=a+c and b2=−a2c
∴a,b,c are in A.P. or −a2,b,c
or a,b,−c2 are in G.P. ∴(c)→(p,q,r).
(d) a+b+c=32⟹b=12
∴(d)→(s)