The correct option is D (∑pq)3
A = ⎡⎢⎣−qrp(q+r)pr+pqpq+qr−prpq+qrqr+prqr+pr−pq⎤⎥⎦
|A| = ∣∣
∣
∣∣−qrp(q+r)pr+pqpq+qr−prpq+qrqr+prqr+pr−pq∣∣
∣
∣∣
applying R1→R1+R2+R3 gives
→(pq+qr+pr)∣∣
∣∣111pq+qr−prpq+qrqr+prqr+pr−pq∣∣
∣∣
applying C1→C1−C3 and expanding gives
→(pq+qr+pr)∣∣
∣∣0110−prpq+qrpq+qr+prqr+pr−pq∣∣
∣∣=(pq+qr+pr)3
∴|A|=(pq+qr+pr)3
Hence, option D.