The correct option is C 40√5 m
As we know that the equation of trajectory is y=xtanθ−gx22u2cos2θ, where y is the verticle displacement, x is horizontal displacement.
Putting the values in the equation of trajectory we get,
y=80×34−10×80×80×252×50×50×16=40 m
(tan37o=34, u=50 m/s, x=80 m and cos37o=45)
∴ Distance from point of projection
=√(80)2+(40)2 m=40√5 m