let, \(g_h\) be the acceleration due to gravity at a height \(h\) from the ground.
We know that \(\dfrac{g_h}{g}=\left ( \dfrac{R}{R+h} \right )^2\)
Here, \(h=\dfrac{R}{2}\)
\(\therefore \dfrac{g_h}{g}=\left ( \dfrac{R}{R+R/2} \right )^2=\dfrac{4}{9}\)
If \(W\) be the weight of the body on the surface of Earth and \(W_h\) the weight of the body at height \(h\)
Then, \(\dfrac{W_h}{W}=\dfrac{mg_h}{mg}=\dfrac{g_h}{g}=\dfrac{4}{9}\)
or \(W_h=\dfrac{4}{9}W=\dfrac{4}{9}\times 63=28 N\)