The series is a b c c a b | b c a a b c | a b c c a b
Here, the pattern a b c c a b | b c a a b c is repeated alternatively.
a2+bc+ab+ac=?(a) (a+b)(a+c)(b) (a+b)(b+c)(c) (b+c)(c+a)(d) a(a+b+c)
Express the det A=∣∣ ∣∣abcabcbcaabccababc∣∣ ∣∣as product of factors
The determinant ∣∣ ∣ ∣∣b2−abb−cbc−acab−a2a−bb2−abbc−acc−aab−a2∣∣ ∣ ∣∣ equals to:
(a) abc(b-c)(c-a)(a-b) (b) (b-c)(c-a)(a-b) (c) (a+b+c)(b-c)(c-a)(a-b) (d) None of these