A card is drawn from a deck of 52 cards. Find the probability of getting a king or a heart or a red card.
Let S be the sample space. Then, n(S) = 52.
Let E1,E2 and E3 be the events of getting a king, a heart and a red card respectivel. Then,
n(E1)=4,n(E2)=13 and n(E3)=26.
(E1∩E2) = event of getting a king of hearts;
(E2∩E3) = event of getting a heart [∵ a heart is a red card also];
(E3∩E1) = event of getting a red king;
and (E1∩E2∩E3) = event of getting a king of hearts.
∴n(E1∩E2)=1,n(E2∩E3)=13,n(E3∩E1)=2 and n(E1∩E2∩E3)=1.
∴P(E1)=n(E1)n(S)=452=113;P(E2)=n(E2)n(S)=1352=14;
P(E3)=n(E3)n(S)=2652=12;P(E1∩E2)=n(E1∩E2)n(S)=152;
P(E2∩E3)=n(E2∩E3)n(S)=252=126
and P(E1∩E2∩E3)=n(E1∩E2∩E3)n(S)=152.
∴ P(getting a king or a heart or a red card)
∴ P(getting a king or a heart or a red card)
=P(E1 or E2 or E3)=P(E1∪E2∪E3)
=P(E1)+P(E2)+P(E3)−P(E1∩E2)−P(E2∩E3)−P(E3∩E1)+P(E1∩E2∩E3)
=(113+14+12−152−14−126+152)=2852=713.
Hence, the required probability is 713.