A factor of a2−2ab+b2−c2 is ___________.
a-b+c
a-b-c
Both 1 and 2
a+b-c
a2−2ab+b2−c2=(a−b)2–c2 Using identity x2−y2=(x+y)(x−y) we get (a−b)2–c2 = [(a−b)+c][(a−b)−c] Hence, factors of a2−2ab+b2−c2 are a−b+c and a−b−c
Divide:[(a2+2ab+b2)−(a2+2ac+c2)] by 2a+b+c
If a + b + c = 2s, then prove the following identities
(a) s2 + (s − a)2 + (s − b)2 + (s − c)2 = a2 + b2 + c2
(b) a2 + b2 − c2 + 2ab = 4s (s − c)
(c) c2 + a2 − b2 + 2ca = 4s (s − b)
(d) a2 − b2 − c2 + 2ab = 4(s − b) (s − c)
(e) (2bc + a2 − b2 − c2) (2bc − a2 + b2 + c2) = 16s (s − a) (s − b) (s − c)
(f)