Let P(x,y) be the position of the jet and the soldier is placed at A(3,2).
⇒ AP=√(x−3)2+(y−2)2...(i)
As y=(x2+2⇒x2=y−2...(ii)
⇒ AP2=(x−3)2+x4=z(Say)
⇒ dzdx=2(x−3)+4x3 and d2zdx2=2+12x2
For local points of maxima/minima,dzdx=0⇒2(x−3)+4x3=0⇒ x=1
And d2zdx2(at x=1)=14>0
∴ z is minimum when x=1,y=1+2=3
Also minimum distance = √(1−3)2+(3−2)2=√5 units.