Equation of normal at any point P(acosθ,bsinθ) to the ellipse x2a2+y2b2=1 is
axcosθ−bysinθ=a2−b2…(i)
Given, line lx+my=n is also normal to ellipse, then there must be a value of θ for which line (i) and the given line are identical.
∴la/cosθ=m−b/sinθ=na2−b2
⇒cosθ=anl(a2−b2),sinθ=−bnm(a2−b2)
We have,
sin2θ+cos2θ=1⇒(anl(a2−b2))2+(−bnm(a2−b2))2=1⇒n2(a2−b2)2(a2l2+b2m2)=1
∴k=1⇒7k=7