A minimum value of sinxcos2x is-
f(x)=sinx.cos2x
=sinx(1−2sin2x)
=sinx−2sin3x
Hence
f′(x)=cosx−6sin2x.cosx
=0 ... for critical point.
Or
cosx(1−6sin2x)=0
cosx=0 or sinx=1√6
Now
f"(x)
=−sinx−12sinx.cosx+6sin3x
At x=sin−11√6 we get
f"(x)<0.
Hence
f(x=sin−11√6)
=1√6−26√6
=3−13√6
=23√6
This is the maximum value.
for minimum value f"(x)>0 at x=cos−1(0)
Substituting, we get
f(π2)
=1−2
=−1.