(a) The given equation is
3x2−2x(a+b+c)+(ab+bc+ca)=0
Roots Equal. ⇒B2−4AC=0
or 4(a+b+c)2−12(ab+bc+ca)=0
or (a2+b2+c2+2∑ab−3∑ab)=0
or (a2+b2+c2−ab−bc−ca=0
or 12[2a2+2b2+2c2−2ab−2bc−2ca]=0
or Δ=12[(a−b)2+(b−c)2+(c−a)2]=0
Clearly Δ≥0 ∴ Roots are real
They will be equal if Δ=0. Hence
a−b=0,b−c=0,c−a=0 or a=b=c.
Converse : If a=b=c then the given equation reduces to 3(x−a)2=0 which clearly has equal roots.
(b) The given equation can be written as
3x2−[4(a+c)−2b]x−(b2−4ac)=0
Δ=[4(a+c)−2b]2+12(b2−4ac)
=4[2(a+c)−b]2+(3b2−12ac)
=4[4(a2+c2+2ac)+b2−4b(a+c)+3b2−12ac]
=16[a2+b2+c2−ab−bc−ca].........(1)
=8[(a−b)2+(b−c)2+(c−a)2]=+ive
∴ Roots are real.
Note : we can also use the inequality
a2+b2+c2>ab+bc+ca in (1)
as a2+b2>2ab,b2+c2>2bc,c2+a2>2ca.
(c) D=−4(3λ−5)2 If λ≠53 their D is always −ive and hence roots are complex. But if λ=53 their D=0 and is that case the root will be equal.