Each Part: 3 Marks
(a) LHS =√1−cos A1+cos A
=√(1−cos A)(1+cos A)(1+cos A)(1+cos A)
=√1−cos2 A(1+cos A)2=√sin2 A(1+cos A)2
=sin A1+cos A= RHS Proved
(b) LHS =tan2 θ(sec θ−1)2=[sin θcos θ1cos θ−1]2
=[sin θcos θ1−cos θcos θ]2=sin2 θ(1−cos θ)2
=1−cos2 θ(1−cos θ)2
=1−cos2 θ(1−cos θ)2=(1−cos θ)(1+cos θ)(1−cos θ)(1−cos θ)
=1+cos θ1−cos θ= RHS
Hence proved