wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(a) Show that 1cos A1+cos A=sin A1+cos A

(b) Prove that tan2 θ(sec θ1)2=1+cos θ1cos θ [6 MARKS]



Open in App
Solution

Each Part: 3 Marks

(a) LHS =1cos A1+cos A

=(1cos A)(1+cos A)(1+cos A)(1+cos A)

=1cos2 A(1+cos A)2=sin2 A(1+cos A)2

=sin A1+cos A= RHS Proved


(b) LHS =tan2 θ(sec θ1)2=[sin θcos θ1cos θ1]2

=[sin θcos θ1cos θcos θ]2=sin2 θ(1cos θ)2

=1cos2 θ(1cos θ)2

=1cos2 θ(1cos θ)2=(1cos θ)(1+cos θ)(1cos θ)(1cos θ)

=1+cos θ1cos θ= RHS

Hence proved




flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon