A tetrahedron has vertices at O(0,0,0),A(1,−2,1),B(−2,1,1) and C(1,−1,2). Then, the angle between the faces OAB and ABC will be
A
cos−1(12)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cos−1(−16)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
cos−1(−13)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
cos−1(14)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ccos−1(−13)
Vector perpendicular to face OAB=→n1 =¯¯¯¯¯¯¯¯OAׯ¯¯¯¯¯¯¯OB =(^i−2^j+^k)×(−2^i+^j+^k) =(−2−1)^i+(−2−1)^j+(1−4)^k =−3^i−3^j−3^k Vector perpendicular to face ABC=→n2. =¯¯¯¯¯¯¯¯ABׯ¯¯¯¯¯¯¯AC =(−3^i+3^j)×(^j+^k) =3^i+3^j−3^k Since, angle between faces is equal to angle between their normals. ∴cosθ=→n1.→n2|n1||n2| =(−3)(3)+(−3)(3)+(−3)(−3)√9+9+9√9+9+9 =−9−9+9√27√27=−13 ⇒θ=cos−1(−13)