Simplifying the expression
Let, ax=by=cz=k
az=k,by=k and cz=k
a=k1x,b=k1y and c=k1z
Now,
b2=ac
Substitute the value of a,b and c we get
(1ky)2=k1z×k1z
k2y=k1x+1z [∴ am×an=am+n]
2y=1x+1z
⇒ 2y=z+xxz
Reversing both sides, we get
y2=xzz+x
∴ y=2xzx+z
Hence, proved.