The correct option is B [121]T
P=⎡⎢⎣110022003⎤⎥⎦
We know that "The eigen values upper triangular matrix (UTM) or lower triangular matrix (LTM) are the leading diagonal elements"
∴ Eigen values of matrix P are 1, 2 and 3
Let λ1=1,λ2=2,λ3=3
Eigen vector for λ=3
[P−λI][X]=0
⎡⎢⎣1−31002−32003−3⎤⎥⎦⎡⎢⎣X1X2X3⎤⎥⎦=0
⇒⎡⎢⎣−2100−12000⎤⎥⎦⎡⎢⎣X1X2X3⎤⎥⎦=0
⇒2x1=x2,x2=2x3
Now let x3=k. Then x2=2k & x1=k
⇒[x1:x2:x3]=[1:2:1]
∴ Eigen vector corresponding to eigen value 3 is [1:2:1]T