Angle between two line of regression is given by.
tan-1[bxy–(1/byx)]/[1–(bxy/byx)]
tan-1[byx.bxy–1]/[(byx+bxy)]
tan-1[bxy–(1/byx)]/[1+(bxy/byx)]
tan-1[byx–bxy]/[1+(byx.bxy)]
Explanation for the correct option:
Consider general equation line is given by,
y=byxx+c1&x=bxyy+c2
Now,
y=byx.x+c1⇒m1=byxx=bxy.y+c2⇒m2=1bxytan(θ)=(m1-m21+m1.m2)where,m1&m2aretheslope=(byx-1bxy1+byx.1bxy)=(bxy.byx-1bxybxy+byxbxy)=(bxy.byx-1bxy+byx)tan(θ)=(bxy.byx-1-bxy+byx)θ=tan-1((bxy.byx-1bxy+byx))
The regression of the two lines between the angle is tan-1[byx.bxy-1][byx+bxy]
Hence option(B) is correct.