Assume that P(A)=P(B). Show that A=B.
Let x∈ A ⇒ {x}∈P(A)
⇒ {x}∈P(B) [∵ P(A)=P(B)]
⇒ x∈B
∴ A⊂B ...(i)
Let x∈B ⇒ {x}∈P(B)
⇒ {x}∈P(A) [∵ P(A)=P(B)]
⇒ x∈A
∴ B⊂A ...(ii)
From (i) and (ii), we have A=B
If A=B then show that P(A)=P(B)