Asymptote(s) of the function f(x)=x3+2x2−92x3−8x+3 is/are
y=x3+2x2−92x3−8x+3
because maximum degree (i.e. 3) is equal in both denominator and numerator, hence there is a horizontal asymptote.
y=x3(1+2x−9x3)x3(2−8x2+3x3)
Now y=(1+limx→∞2x−limx→∞9x3)(2−limx→∞8x2+limx→∞3x3)
Hence y=12 is a horizontal asymptote.