Show that:
∣∣ ∣∣b+caabc+abcca+b∣∣ ∣∣ =4abc
To prove:
∣∣ ∣∣b+caabc+abcca+b∣∣ ∣∣ =4abc
Proof:
Lets take LHS and then equate it to RHS.
LHS =∣∣ ∣∣b+caabc+abcca+b∣∣ ∣∣
R1=R1−(R2+R3)
=∣∣ ∣∣b+c−(b+c)a−(c+a+c)a−(b+a+b)bc+abcca+b∣∣ ∣∣
=∣∣ ∣∣0−2c−2bbc+abcca+b∣∣ ∣∣
=0{(c+a)(a+b)−bc)}−(−2c){b(a+b)−bc}+(−2b){bc−(c(c+a)}
=0+2c(ab+b2−bc)−2b(bc−c2−ac)
=2abc+2b2c−2bc2−2b2c+2bc2+2abc
=4abc
= RHS
∴∣∣ ∣∣b+caabc+abcca+b∣∣ ∣∣=4abc
Hence, proved.