∣∣
∣∣0xyzx−zy−x0y−zz−xz−y0∣∣
∣∣=
Evaluating the given determinant by using the row & column operation of determinant.
Let, Δ=∣∣
∣∣0xyzx−zy−x0y−zz−xz−y0∣∣
∣∣
Applying C1→C1−C3
⇒Δ=∣∣
∣∣z−xxyzx−zz−x0y−zz−xz−y0∣∣
∣∣
Taking (z−x) common from C1
⇒Δ=(z−x)∣∣
∣∣1xyzx−z10y−z1z−y0∣∣
∣∣
Applying R1→R1−R2,R2→R2−R3
⇒Δ=(z−x)∣∣
∣∣0xyzx−y0y−zy−z1z−y0∣∣
∣∣
Taking (y−z) common from R2
⇒Δ=(z−x)(y−z)∣∣
∣∣0xyzx−y0111z−y0∣∣
∣∣
Expanding along C1
⇒Δ=(z−x)(y−z)(xyz−x+y)
Hence, the value of determinant is
(z−x)(y−z)(y−x+xyz)