The correct option is
A 1+3∑i=1(ai+bi)+∑∑1≤i<j≤3(ai−aj)(bj−bi)Let
Δ=∣∣
∣∣1+a1+b1a1+b2a1+b3a2+b11+a2+b2a2+b3a3+b1a3+b21+a3+b3∣∣
∣∣=∣∣
∣∣1a1+b2a1+b301+a2+b2a2+b30a3+b21+a3+b3∣∣
∣∣+∣∣
∣∣a1a1+b2a1+b3a21+a2+b2a2+b3a3a3+b21+a3+b3∣∣
∣∣+∣∣
∣∣b1a1+b2a1+b3b11+a2+b2a2+b3b1a3+b21+a3+b3∣∣
∣∣
Δ=Δ1+Δ2+Δ3 say (1)
Expand Δ1 with respect to C1, we get
Δ1=1+a2+a3+b2+b3+(a2−a3)(b3−b2)
and
Δ2=∣∣
∣∣a1a1+b2a1+b3a21+a2+b2a2+b3a3a3+b21+a3+b3∣∣
∣∣
Applying C2→C2−C1;C3→C3−C1
=∣∣
∣∣a1b2b3a21+b2b3a3b21+b3∣∣
∣∣
Applying R2→R)2−R1;R3→R3−R1
=∣∣
∣∣a1b2b3a2−a110a3−a101∣∣
∣∣
∴Δ2=a1+b2(a1−a2)+b3(a1−a3)
Δ3=∣∣
∣∣b1a1+b2a1+b3b11+a2+b2a2+b3b1a3+b21+a3+b3∣∣
∣∣
Applying R2→R2−R1;R3→R3−R1
∣∣
∣∣b1a1+b+2a1+b301+a2−a1a2−a10a3−a11+a3−a1∣∣
∣∣
Δ3=b1−b1(a1−a2)−b1(a1−a3)
Therefore from (1), we have
Δ=Δ1+Δ2+Δ3
=1+3∑i=1(ai+bi)+∑∑1≤i<j≤3(ai−aj)(bj−bi)