∣∣ ∣ ∣∣1+a2−b22ab−2b2ab1−a2+b22a2b−2a1−a2−b2∣∣ ∣ ∣∣=(1+a2+b2)3
LHS=∣∣ ∣ ∣∣1+a2−b22ab−2b2ab1−a2+b22a2b−2a1−a2−b2∣∣ ∣ ∣∣=∣∣ ∣ ∣∣1+a2+b20−2b01+a2+b22ab(1+a2+b2)−a(1+a2+b2)1−a2−b2∣∣ ∣ ∣∣ (C1→C1−bC3 and C2→C2+aC3)
=(1+a2+b2)2∣∣
∣∣10−2b012ab−a1−a2−b2∣∣
∣∣
(take out (1+a2+b2) common from C1 and same from C2
=(1+a2+b2)∣∣
∣∣10−2b012a001+a2+b2∣∣
∣∣ (R3→R3−bR1+aR2)
Expanding along R1, we get
=(1+a2+b2)2[1(1+a2+b2)]=(1+a2+b2)3=RHS