∣∣ ∣ ∣∣1aa21bb21cc2∣∣ ∣ ∣∣=(a−b)(b−c)(c−a)
∣∣ ∣∣111abca3b3c3∣∣ ∣∣=(a−b)(b−c)(c−a)(a+b+c)
Let Δ=∣∣
∣
∣∣1aa21bb21cc2∣∣
∣
∣∣
Operating R1→R1−R3 and R2→R2−R3, we get
=∣∣ ∣ ∣∣0(a−c)(a2−c2)0(b−c)(b2−c2)1cc2∣∣ ∣ ∣∣=∣∣ ∣ ∣∣0(a−c)(a+c)(a−c)0(b−c)(b+c)(b−c)1cc2∣∣ ∣ ∣∣ [∵ a2−b2=(a+b)(a−b)]
Taking common factors (a-c) and (b-c) from R1 and R2 respectively, we get =(a−c)(b−c)∣∣
∣
∣∣01(a+c)01(b+c)1cc2∣∣
∣
∣∣
Now, expanding corresponding to C1 we get
=(a−c)(b−c)(b+c−a−c)=(a−b)(b−c)(c−a)=RHS
Hence proved.
Let Δ=∣∣
∣∣111abca3b3c3∣∣
∣∣
Operating C1→C1−C2 and C2→C2−C3, we get
=∣∣ ∣∣001a−bb−cca3−b3b3−c3c3∣∣ ∣∣=∣∣ ∣ ∣∣001(a−b)(b−c)c(a−b)(a2+ab+b2)(b−c)(b2+bc+c2)c3∣∣ ∣ ∣∣ [∵x3−y3=(x−y)(x2+xy+y2)]
Taking common (a-b) from C1 and (b−c) from C2. We get
=(a−b)(b−c)∣∣
∣∣00111ca2+ab+b2b2+bc+c2c3∣∣
∣∣
Now expanding along R1. We get
=(a−b)(b−c)[1×(b2+bc+c2)−1×(a2+ab+b2)]=(a−b)(b−c)[b2+bc+c2−a2−ab−b2]=(a−b)(b−c)[bc−ab+c2−a2]=(a−b)(b−c)[b(c−a)(c−a)(c+a)]=(a−b)(b−c)(c−a)(a+b+c)=RHS.
Hence proved.
In this type of questions we only use either row operations or column operations not both at one time.