The correct option is A xyz(1+1x+1y+1z)
Δ=xyz∣∣
∣
∣
∣∣1+1x1x1x1y1+1y1y1z1z1+1z∣∣
∣
∣
∣∣=xyz(1+1x+1y+1z)∣∣
∣
∣∣1111y1+1y1y1z1z1+1z∣∣
∣
∣∣,by R1→R1+R2+R3=xyz(1+1x+1y+1z)∣∣
∣
∣∣1001y101z01∣∣
∣
∣∣,by C2→C2−C1C3→C3−C1=xyz(1+1x+1y+1z)∣∣∣1001∣∣∣=xyz(1+1x+1y+1z).
Trick : Put x=1, y=2 and z=3, then ∣∣
∣∣211131114∣∣
∣∣=2(11)−1(3)+1(1−3)=17
Option (a) gives, 1×2×3(1+11+12+13)=17.