∣∣ ∣ ∣∣1xx2x21xxx21∣∣ ∣ ∣∣=(1−x3)2
∣∣ ∣ ∣∣1xx2x21xxx21∣∣ ∣ ∣∣=∣∣ ∣ ∣∣1+x+x2xx21+x+x21x1+x+x2x21∣∣ ∣ ∣∣ (using C1→C1+C2+C3)
Take out (1+x+x2) common from C1, we get
=(1+x+x2)∣∣
∣
∣∣1xx211x1x21∣∣
∣
∣∣=(1+x+x2)∣∣
∣
∣∣1xx201−xx−x20x2−x1−x2∣∣
∣
∣∣ (using R2→R2−R1 and R3→R3−R1)
=(1+x+x2)∣∣ ∣ ∣∣1xx201−xx(1−x)0x(x−1)1−x2∣∣ ∣ ∣∣
Take out (1-x) common fromR2 and same from R3, we get
=(1+x+x2)(1−x)(1−x)∣∣
∣∣1xx201x0−x1+x∣∣
∣∣
Expanding along C1, we get
=(1+x+x2)(1−x)(1−x)[(1×1+x)−(−x)(x)]=(1+x+x2)(1−x)(1−x)(1+x+x2)=[(1−x3)(1−x3)]=(1−x3)2=RHS [∵1−x3=(1−x)(1+x+x2)]