The correct option is A (a+b+c)3
∣∣
∣∣2c2cc−a−ba−b−c2a2a2bb−c−a2b∣∣
∣∣
C1→C1−C2,C2→C2−C3
=∣∣
∣
∣∣0(a+b+c)c−a−b−(a+b+c)02a(a+b+c)−(a+b+c)2b∣∣
∣
∣∣
=(a+b+c)2∣∣
∣∣01c−a−b−102a1−12b∣∣
∣∣
R3→R3+R2
=(a+b+c)2∣∣
∣∣01c−a−b−102a0−12a+2b∣∣
∣∣
=(a+b+c)2[1(2a+2b+c−a−b)]
=(a+b+c)3