The correct option is D (a+b+c)3
Let Δ=∣∣
∣∣a−b−c2a2a2bb−c−a2b2c2cc−a−b∣∣
∣∣
Applying R1→R1+R2+R3 and taking common (a+b+c) from R1
=(a+b+c)∣∣
∣∣1112bb−c−a2b2c2cc−a−b∣∣
∣∣
Applying C2→C2→C1 and C3→C3→C1
=(a+b+c)∣∣
∣∣1002b−b−c−a02c0−a−b−c∣∣
∣∣
=(a+b+c)[(−b−c−a)(−a−b−c)]
=(a+b+c)