The correct option is C n(a+b+c)3
∣∣
∣
∣∣a+b+nc(n−1)a(n−1)b(n−1)cb+c+na(n−1)b(n−1)c(n−1)a(c+a+nb)∣∣
∣
∣∣
C1→C1+C2+C3
=∣∣
∣
∣∣n(a+b+c)(n−1)a(n−1)bn(a+b+c)b+c+na(n−1)bn(a+b+c)(n−1)a(c+a+nb)∣∣
∣
∣∣
=n(a+b+c)∣∣
∣
∣∣1(n−1)a(n−1)b1b+c+na(n−1)b1(n−1)a(c+a+nb)∣∣
∣
∣∣
R2→R2−R1,R3→R3−R1
=n(a+b+c)∣∣
∣∣1(n−1)a(n−1)b0b+c+a000c+a+b∣∣
∣∣
=n(a+b+c)3