Consider the following question.
C0+2C1+3C2+4C3+...+(n+1)Cn=(n+2)2n−1
(1 + x)n = C0 + C1x + C2x2 +...+ Cnxn.....(1)
Multiplying (1) with x, we get.
x(1+x)n = C0x + C1x2 + C2x3 +...+ Cnxn+1......(2)
(1 + x)n + n(1 + x)n 1 x= C0x + 2C1x2 +...+ (n+1)Cnxn ... (3)
Putting = 1 in (3),we text get.
2n + n.2n 1 = C0 + 2C1 + 3C2 +...+ (n+1)Cn
C0 + 2C1+ 3C2 +...+ (n+1)Cn = 2n−1 (n+2)
Hence, this is the required answer.