C34+C56+C78+......=(n!)(n−3)!3!4+(n!)(n−5)!5!6+(n!)(n−7)!7!8+...=(n!)(n−3)!4!+(n!)(n−5)!6!+(n!)(n−7)!8!+...=1(n+1)((n+1)!(n+1−4)!4!+(n+1)!(n+1−6)!6!+(n+1)!(n+1−8)!8!+...)=1(n+1)((n+1)!(n+1−4)!4!+(n+1)!(n+1−6)!6!+(n+1)!(n+1−8)!8!+...)=1(n+1)((n+14)+(n+16)+(n+18)+...)=1(n+1)((n+10)+(n+12)+(n+14)+(n+16)+(n+18)+...−(n+10)−(n+12))=1(n+1)(2n+1−1−1−n(n+1)2)(∵(n0)+(n2)+(n4)+...=2n−1)=2n−1n+1−n2=2n+1−2−n−n22(n+1)