wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Calculate the area between two curves:
y=x2
y=x+1.

Open in App
Solution

From the graph we get
Here y=x2 & y=x+1 intercept at two point
So, y=x2=x+1
x2=x+1
x2x1=0 So, x=b±b24ac2a
x=(1)±(1)24(1)(1)2a=1+52
x21+52 & x1=152
So, I=x2x1[(x+1)x2]dx
I=1+52152(x2+x+1) dx
I=[x33+x22+x]1+52152
I=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪(1+52)33+(1+52)22+(1+52)⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪(152)33+(152)22+(152)⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
I=(152)3(1+52)33×(1+52)2(152)22
(1+52)(152)
[Here a3b3=(ab)2(a2ab+b2)=(ab)3+3ab(ab) & a2b2=(a+b)(ab)]
I=((15)(1+52)3+3(152)(1+52)((15)(1+5)2)3
+(1+5+152)(1+51+52)2
+(1+51+52)
=(5)3+34(15)(5)3+(1)(5)
+(5)
=55+3(5)3+25
=253+25
=453
I=453=453

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Tangent to a Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon