From the graph we get
Here y=x2 & y=x+1 intercept at two point
So, y=x2=x+1
∴x2=x+1
∴x2−x−1=0 So, x=−b±√b2−4ac2a
∴x=−(−1)±√(−1)2−4(1)(−1)2a=1+√52
∴x21+√52 & x1=1−√52
So, I=∫x2x1[(x+1)−x2]dx
I=∫1+√521−√52(−x2+x+1) dx
I=[−x33+x22+x]1+√521−√52
I=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩−(1+√52)33+(1+√52)22+(1+√52)⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭−⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩−(1−√52)33+(1−√52)22+(1−√52)⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭
I=(1−√52)3−(1+√52)33×(1+√52)2−(1−√52)22
(1+√52)−(1−√52)
[Here a3−b3=(a−b)2(a2−ab+b2)=(a−b)3+3ab(a−b) & a2−b2=(a+b)(a−b)]
I=((1−√5)−(1+√52)3+3(1−√52)(1+√52)((1−√5)−(1+√5)2)3
+(1+√5+1−√52)(1+√5−1+√52)2
+(1+√5−1+√52)
=(−√5)3+34(1−5)(−√5)3+(1)(√5)
+(√5)
=−5√5+3(√5)3+2√5
=−2√53+2√5
=4√53
I=∣∣∣4√53∣∣∣=4√53