Choose the correct answer.
If f(a+b−x)=f(x), then ∫bax f(x) dx is equal to(a)a+b2∫baf(b−x)dx(b)a+b2∫baf(b+x)dx(c)b−a2∫baf(x) dx(d)a+b2∫baf(x) dx
Let ∫bax f(x)dx ........(i)
Then, by a property of definite integrals
I=∫ba(a+b−x)f(a+b−x)dx=∫ba(a+b−x)f(x) dx ...(ii) (∵ Given f(a+b−x)=f(x))
On adding Eqs. (i) and (ii), we get
2I=∫ba(a+b)f(x) dx ⇒ I=a+b2∫baf(x) dx
∴ Hence, the option (d) is correct.