Let f(x)=sinx
We know that f′(x)=limh→0f(x+h)−f(x)h
⇒f′(x)=limh→0sin(x+h)−sin xh
Using {sinA−sinB=2cos(A+B2)⋅sin(A−B2)}
f′(x)=limh→02cos(x+h+x2)⋅sin(x+h−x2)h
⇒f′(x)=limh→0⎛⎜
⎜
⎜⎝cos(2x+h2)⋅sinh2h2⎞⎟
⎟
⎟⎠
⇒f′(x)=limh→0cos2x+h2⋅limh→0sinh2h2
⇒f′(x)=limh→0cos2x+h2×1
⇒f′(x)=limh→0cos2x+h2
⇒f′(x)=cos(2x+02)
⇒f′(x)=cos(2x2)
⇒f′(x)=cosx
∴f′(x)=cosx