Equation of any line through
P can be written as
x−x1cosθ=y−y1sinθ=r ...(1)
⇒x=x1+rcosθ,y=y1+rsinθ.
Coordinates of any point an (1) is of the form (x1+rcosθ,y1+rsinθ).
This point will lie on ax2+2hxy+by2=1 if
a(x1+rcosθ)2+2h(x1+rcosθ)(y1+rsinθ)+b(y1+rsinθ)2−1=0
⇒r2(acos2θ+2hcosθsinθ+bsin2θ)+2[x1(acosθ+hsinθ)+y1(hcosθ+bsinθ)]
+ax21+2hx1y1+by21−1=0 ...(2)
Let PQ=r1 and PR=r2.
Then r1,r2 are the roots of (2).
∴PQ:PR=r1r2=ax21+2hx1y1+by21−1acos2θ+2hcosθsinθ+bsin2θ.
We know rewrite the denominator.
We haveD=acos2θ+2hcosθsinθ+bsin2θ.
=12[(a+b)+(a−b)cos2θ]+hsin2θ
=a+b2+12(a−b)cos2θ+hsin2θ
Put 12(a−b)=ksinα,h=kcosα.
⇒k=√(a+b2)2+h2 and tanα=a−b2h
∴D=12(a+b)+√(a−b2)2+h2sin(2θ+α)
Thus, PQ.PR=ax21+2hx1y1+by21−112(a+b)+√(a−b2)2+h2sin(2θ+α)
For this to be independent of θ we must have (a−b2)2+h2=0⇒a=b and n=0.
But this to be condition for the given curve to represent a circle.