wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Consider f : {1, 2, 3} → { a , b , c } given by f (1) = a , f (2) = b and f (3) = c . Find f −1 and show that ( f −1 ) −1 = f .

Open in App
Solution

The provided function is f:{ 1,2,3 }{ a,b,c } is given by, f( 1 )=a , f( 2 )=b and f( 3 )=c .

Consider the inverse of the function g:{ a,b,c }{ 1,2,3 } as g( a )=1 , g( b )=2 and g( c )=3 .

fog( a )=f( g( a ) ) =f( 1 ) =a

fog( b )=f( g( b ) ) =f( 2 ) =b

fog( c )=f( g( c ) ) =f( 3 ) =c

gof( 1 )=g( f( 1 ) ) =g( a ) =1

gof( 2 )=g( f( 2 ) ) =g( b ) =2

gof( 3 )=g( f( 3 ) ) =g( c ) =3

The range of the function gof and fog is given by,

gof= I x X={ 1,2,3 } fog= I y Y={ a,b,c }

Thus, the inverse of the function f exists and f 1 =g .

The provided function is f 1 :{ a,b,c }{ 1,2,3 } is given by, f 1 ( a )=1 , f 1 ( b )=2 and f 1 ( c )=3 . Consider the inverse of the function h:{ 1,2,3 }{ a,b,c } as h( 1 )=a , h( 2 )=b and h( 3 )=c .

hog( a )=h( g( a ) ) =h( 1 ) =a

hog( b )=h( g( b ) ) =h( 2 ) =b

hog( c )=h( g( c ) ) =h( 3 ) =c

goh( 1 )=g( h( 1 ) ) =g( a ) =1

goh( 2 )=g( h( 2 ) ) =g( b ) =2

goh( 3 )=g( h( 3 ) ) =g( c ) =3

The range of the function gof and fog is given by,

goh= I x X={ 1,2,3 } hog= I y Y={ a,b,c }

Thus, the inverse of the function f 1 exists and ( f 1 ) 1 =h .

The value of h is equal to that of the function f .

Thus, the value of ( f 1 ) 1 is f .


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Inverse of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon