The correct option is B Range of f(x) is singleton set
Given : f(x)=cos−1([2x])+sin−1([2x−1])
For f(x) to be defined
−1≤[2x]≤1 and −1≤[2x−1]≤1−1≤[2x]≤1 and −1≤[2x]−1≤1⇒−1≤[2x]≤1 and 0≤[2x]≤2⇒[2x]=0,1⇒2x∈(0,2) (∵2x≠0)⇒x∈(−∞,1)
When [2x]=0, then
f(x)=cos−1(0)+sin−1(−1)⇒f(x)=π2−π2=0
When [2x]=1, then
f(x)=cos−1(1)+sin−1(0)⇒f(x)=0+0=0
∴ Range of f(x) is {0}
Hence, f(x) is neither even nor odd function.