The correct option is C 23x−13y+32z+45=0 is acute angle bisector
Given :
P1:2x−y+2z+3=0,P2:3x−2y+6z+8=0,
⇒D.r′s of normal to P1=(a1,b1,c1)=(2,−1,2)
D.r′s of normal to P2=(a2,b2,c2)=(3,−2,6) and d1,d2>0
now, a1a2+b1b2+c1c2>0
So, The angle bisector is :
P1√a21+b21+c21=±P2√a22+b22+c22
taking negative sign for acute angle bisector,
⇒2x−y+2z+3√4+1+4=−3x−2y+6z+8√9+4+36
on solving we get,
23x−13y+32z+45=0
and taking positive sign for obtuse angle bisector:
⇒2x−y+2z+3√4+1+4=3x−2y+6z+8√9+4+36
on solving we get the obtuse angle bisector is,
5x−y−4z−3=0