The correct options are
A cos12x=cos14x
B sin13x=0
C sinx=0
cos4x.cos8x−cos5x.cos9x=0⇒cos4x.cos8x=cos5x.cos9x⇒2cos4x.cos8x=2cos5x.cos9x
Using 2cosAcosB=cos(A−B)+cos(A+B), we get
cos(−4x)+cos12x=cos(−4x)+cos14x⇒cos12x=cos14x⇒cos12x−cos14x=0
Hence option A is true
Now using cosA−cosB=−2sin(A+B2)sin(A−B2), we get
−2sin13xsin(−x)=0⇒2sin13xsinx=0⇒sin13x=0sinx=0
Hence option B and C are true