wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cos A - 2cos3 A/ 2sin3 A - sin A = cot A

Open in App
Solution

Prove that

(2cos3A -cos A)/ (sin A – 2sin3A) = cot A

We know cos2A = 1- sin2A So 2cos2A = 2- 2sin2A

L.H.S = (2cos3A -cos A)/ (sin A – 2sin3A)

= cos A*(2cos2A -1)/ [sin A * (1 – 2sin2A)]

= cos A*[( 2- 2sin2A)-1]/ [sin A * (1 – 2sin2A)]

= cos A*( 1- 2sin2A)/ sin A * (1 – 2sin2A)

= cos A/SinA * [(1 – 2sin2A)/(1 – 2sin2A)]

= cos A/SinA * 1

= cot A

L.H.S = R.H.S

Hence Proved

flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Values of Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon