Prove that
(2cos3A -cos A)/ (sin A – 2sin3A) = cot A
We know cos2A = 1- sin2A So 2cos2A = 2- 2sin2A
L.H.S = (2cos3A -cos A)/ (sin A – 2sin3A)
= cos A*(2cos2A -1)/ [sin A * (1 – 2sin2A)]
= cos A*[( 2- 2sin2A)-1]/ [sin A * (1 – 2sin2A)]
= cos A*( 1- 2sin2A)/ sin A * (1 – 2sin2A)
= cos A/SinA * [(1 – 2sin2A)/(1 – 2sin2A)]
= cos A/SinA * 1
= cot A
L.H.S = R.H.S
Hence Proved