Expanding the given expression we get
(cosA+sinA)2−(cosA+sinA)2
=cosA2+sinA2+2cosAsinA−(cosA2+sinA2−2cosAsinA)
=2(2cosAsinA)
=4cosAsinA
Hence, option D is correct.
cosecA−1cosecA+1=(cosA1+sinA)2