We know cosθcos2θcos22θcos23θ...cos2n−1θ=sin2nθ2nsinθ
we can easily derive it by multiplying and dividing by 2sinθ and then using the formula sin2θ=2sinθcosθ
cosπ6cos2π6cos4π6cos8π6cos16π6cos32π6
=sin26π626sinπ6
=sin32π326sin30∘=sin(15×2π×2π3)26×12
=sin2π325=sin(π−π3)32=sinπ332
=√32×32=√364