cot−1(2.12)+cot−1(2.22)+cot−1(2.32)+⋯+ up to ∞ is equal to
π/4
cot−1(2.12)+cot−1(2.22)+cot−1(2.32)+⋯+∞
=∑∞r−1cot−1(2.r2)=∑∞r−1tan−1(12r2)
=∑∞r−1tan−1((1+2r)+(1−2r)1−(1+2r)(1−2r))
=∑∞r−1[tan−1(1+2r)+tan−1(1−2r)]
=tan−13−tan−11+tan−15−tan−13+tan−17−tan−15+⋯+tan−1∞
=−π4+π2+=π4