cot-1(3)+cosec-1(β5)=
Ο3
Ο4
Ο6
Ο2
Explanation for the correct option:
Step 1. Suppose cosecβ15=ΞΈ
β cosecΞΈ=5
Given, cot-1(3)+cosec-1(β5) β¦..(1)
β΅cot2ΞΈ=cosec2ΞΈβ1
=5β1
=4
β΄ cotΞΈ=2
βΞΈ=cotβ12
β΄cosecβ15=ΞΈ
β cosec-15=cotβ12
Step 2. Put the value of cosec-15 in Equation (1):
βcotβ13+cotβ12
βtanβ113β+tanβ112
βtanβ1β13β+121β13β.12 β΅tan-1A+tan-1B=tan-1(A+B1-A.B)
βtanβ15656
βtanβ1(1)
βΟ4
Hence, Option βBβ is Correct.
cot 4x (sin 5x + sin 3x) = cot x (sin 5x β sin 3x)