wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

d20(2cosxcos3x)dx20=


A

220(cos2x220cos4x)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

220(cos2x+220cos4x)

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

220(sin2x+220sin4x)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

220(sin2x220sin4x)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

220(cos2x+220cos4x)


Explanation for the correct option:

Step 1.simplify the given function :

Let, y=2cos(x)cos(3x)

=2cosxcos3x=cos3x-x+cos3x+x=cos2x+cos4x 2cos(A)cos(B)=cos(A+B)+cos(A-B)

Step 2. Differentiate with respect to ‘x

dydx=-2sin2x-4sin4x=-2sin2x-4sin4x

Step 3. Again differentiating with respect to ‘x

d2ydx2=-4cos2x-16cos4x=-(22cos2x+42cos4x)=-4cos2x+22cos4x

d3ydx3=-4-2sin2x-16sin4x=8sin2x+64sin4x=23sin2x+43sin4x=43sin(4x)+23sin(2x)d4ydx4=44cos(4x)+24cos(2x)

Similarly

d4nydx4n=44ncos4x+24ncos2x

Put n=5

d20ydx20=420cos4x+220cos2x=220220cos4x+cos2x=220(cos(2x)+220cos(4x))

d20(cos2x+cos4x)dx20=220(cos2x+220cos4x)

Hence, option (B) is correct.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative from First Principles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon