d20(2cosxcos3x)dx20=
220(cos2x–220cos4x)
220(cos2x+220cos4x)
220(sin2x+220sin4x)
220(sin2x–220sin4x)
Explanation for the correct option:
Step 1.simplify the given function :
Let, y=2cos(x)cos(3x)
=2cosxcos3x=cos3x-x+cos3x+x=cos2x+cos4x ∵2cos(A)cos(B)=cos(A+B)+cos(A-B)
Step 2. Differentiate with respect to ‘x’
dydx=-2sin2x-4sin4x=-2sin2x-4sin4x
Step 3. Again differentiating with respect to ‘x’
d2ydx2=-4cos2x-16cos4x=-(22cos2x+42cos4x)=-4cos2x+22cos4x
d3ydx3=-4-2sin2x-16sin4x=8sin2x+64sin4x=23sin2x+43sin4x=43sin(4x)+23sin(2x)d4ydx4=44cos(4x)+24cos(2x)
Similarly
d4nydx4n=44ncos4x+24ncos2x
Put n=5
∴d20ydx20=420cos4x+220cos2x=220220cos4x+cos2x=220(cos(2x)+220cos(4x))
∴d20(cos2x+cos4x)dx20=220(cos2x+220cos4x)
Hence, option (B) is correct.
Factorize: x2−10x+21.