wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(ddx)[(1+cotx)(1-cotx)]=


Open in App
Solution

Determine the derivative of the given function.

(ddx)[(1+cotx)(1-cotx)]=

Use formula:

ddxuv=vdudx-udvdxu2

(ddx)[(1+cotx)(1-cotx)]=(1-cotx)ddx(1+cotx)-(1+cotx)ddx(1-cotx)(1-cotx)2=(1-cotx)ddx1+ddxcotx-(1+cotx)ddx1-ddxcotx(1-cotx)2=(1-cotx).0-cosec2x-(1+cotx).0-(-cosec2x)(1-cotx)2ddxcotx=-cosec2xandddx1=0=-cosec2x+(-cosec2x)12+cot2x-2.1.cotx(a-b)2=a2+b2-2.a.b=-cosec2x-cosec2xcosec2x-2cotxcosec2x-cot2x=1So,cosec2x=1+cot2x=-2cosec2x(1sin2x-2cosxsinx)=-2cosec2x1-2sinxcosxsin2x=22sinxcosx-1sin2x=2sinxcosx=2sin2x-1

Hence, the derivative of the given function (ddx)[(1+cotx)(1-cotx)] is"2sin2x-1".


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon