ddxlog1-cosx1+cosx=
cosecx
secx
cosecx/2
secx/2
Explanation for the correct option:
Step 1. Find the differentiation of given function:
Given, ddxlog1-cosx1+cosx
Let,
y=log1-cosx1+cosx=log1-1-sin2x/21+cos2x/2-1=logsin2x/2cos2(x/2)=logtan2x/2
⇒y=logtanx/2
Step 2. Differentiate with respect to 'x'
dydx=1tanx2×dsec2x2dx×dx2dx
=1tanx/2×sec2x/2×12=cosx2sinx2×1cos2x2×12=12.sinx/2.cosx/2=1sinx
⇒dydx=cosecx
∴d[log1-cos(x)1+cos(x)]dx=cosecx
Hence, option(A) is correct.
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.