ddxlogx+1x=
x+1x
(1+1x2)(x+1x)
(1-1x2)(x+1x)
1+1x
Find the value of
Given, y=logx+1x
Differentiate it with respect to x:
dydx=1x+1x×ddxx+1x=x(x2+1)1–1x2=x(x2+1)(x2–1)x2=(x2–1)x(x2+1)=x21–1x2x2x+1x
∴dydx=(1–1x2)(x+1x)
Hence option (C) is correct.
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.