ddx(sec2x+cosec2x)=
4cosec2xcot2x
-4cosec2xcot2x
4cosecxcot2x
None of these
Finding the value of
Given, y=(sec2x+cosec2x)
=1cos2x+1sin2x=sin2x+cos2xcos2xsin2x=1cosxsinx=2sin2x=2cosec2x
Differentiate it with respect to x, we get
dydx=2×-cosec2xcot2x×2=-4cosec2xcot2x
Hence, option (B) is correct.